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Abstract
This paper explores the large-S route to quantum disorder in the Heisenberg
antiferromagnet on the pyrochlore lattice and its homologues in lower
dimensions. It is shown that zero-point fluctuations of spins shape up a valence-
bond solid at low temperatures for one two-dimensional lattice and a liquid with
very short-range valence-bond correlations for another. A one-dimensional
model demonstrates potential significance of quantum interference effects (as
in Haldane’s gap): the quantum melting of a valence-bond order yields different
valence-bond liquids for integer and half-integer values of S.

1. Introduction

Frustrated magnets have recently become a focus of experimental studies [1–3]. Frustration
disrupts long-range spin order—even at low temperatures—and leads to the formation of a
spin-liquid state, in which spins move in a random yet strongly correlated fashion. A very
large degeneracy of the classical ground state makes these magnets strongly susceptible to
a variety of perturbations [4, 5] and thereby leads to a plethora of possible thermodynamic
phases. It is also thought that the interplay of strong correlations and quantum effects may yield
quantum ground states without magnetic order. Low-temperature properties of such magnets
will be quite distinct from those of the familiar Bose or Fermi liquids. Therefore quantum
ground states and low-energy excitations of frustrated magnets arouse considerable interest.

The ultimate example of strong frustration is the Heisenberg antiferromagnet on the
pyrochlore lattice [6]. In magnets of this kind spins form a three-dimensional network of
corner-sharing tetrahedra (figure 1). A nearly perfect realization of this model is found in
ZnCr2O4 [7] where Cr3+ ions have spin S = 3/2. Recent theoretical studies of such systems
have concentrated on the case S = 1/2 [8–13], for which the quantum effects are most
prominent.

The purpose of this paper is to demonstrate viability of an alternative approach: the large-
S route. There are several reasons to take this circuitous path. First, the method provides a
systematic way to study quantum effects as a function of S. Second, because the very concept
of a frustrated magnet is defined in the classical context, staying close to the classical limit puts
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Figure 1. The pyrochlore lattice and sample ground states of Heisenberg spins on a tetrahedron.

the discussion on firmer ground. Third, magnets of this kind have a propensity toward spin-
Peierls order even in the classical limit [5]. Therefore, there is a reasonable chance of finding
nonclassical states—such as valence-bond solids and liquids—in pyrochlore antiferromagnets
at large S.

It must be realized that the large-S problem is highly nontrivial: the starting point (S = ∞)
has an extensive degeneracy [6]. The original problem for the three-dimensional pyrochlore
lattice remains unsolved. Below we describe a few positive results that have been obtained
recently for homologues of the pyrochlore antiferromagnet in one and two spatial dimensions.
Section 2 outlines a degenerate perturbation theory, due to Henley, that is based on a series
expansion in powers of 1/S. To the first order in 1/S, the theory yields a valence-bond solid
for one two-dimensional ‘pyrochlore’ and a valence-bond liquid for another. By design, the
ad hoc series expansion misses effects which are nonanalytical in 1/S (cf Haldane’s gap).
Section 3 describes such an effect in a one-dimensional ‘pyrochlore’ chain with a spin-Peierls
ground state. In that model, the quantum melting of a valence-bond solid produces qualitatively
different valence-bond liquids for integer and half-integer spins.

2. A 1/S expansion for antiferromagnets on pyrochlore-like lattices

The starting point of the 1/S expansion is the limit S → ∞. The ground states are found by
minimizing the exchange energy J

∑
〈i j〉(Si ·S j ) = O(S2) with respect to classical Heisenberg

spin variables {Si }. In the case of the pyrochlore antiferromagnet, the total spin of every
tetrahedron must vanish (figure 1). A simple counting argument [6] reveals that the manifold
of classical vacua is formidably large: it contains one continuous degree of freedom per
tetrahedron.

The next term in the 1/S expansion contains a quantum correction coming from zero-point
fluctuations of spin waves [14]:

E (1) = constant +
∑

a

1
2 h̄ωa = O(S), (1)

where {ωa} are spin-wave frequencies. Because magnon spectra are not the same in different
ground states, the quantum correction (1) lifts the classical degeneracy. Ordinarily, quantum
fluctuations select a few collinear ground states related to each other by symmetries of the
lattice [15]. In some special cases, the residual degeneracy may be quite large and not linked
to any obvious lattice symmetry [16].

The pyrochlore lattice presents such an exception: Henley [17] has found that an infinite
number of collinear states are selected by zero-point fluctuations. These vacua are not related
to each other by lattice symmetries and most are not even periodic. The exact number of
degenerate ground states is not known. This accidental degeneracy has been linked by Henley to
certain transformations that leave the spin-wave spectrum {ωa} invariant. The transformations
consist of flipping every spin on a (potentially infinite) subset of tetrahedra.
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Figure 2. Two-dimensional lattices built from corner-sharing tetrahedra: (a) the checkerboard.
Valence-bond order induced at low temperatures O(J S/kB) is shown. 〈Si · S j 〉 = −S2 for the
shaded bonds and zero for the rest. (b) One of the ground states of the pyrochlore wafer. Dashed
lines designate frustrated bonds (τi j = −σi σ j = −1). (c) The dimer state that corresponds to the
bond state of one sublattice of tetrahedra.

To determine which of the collinear ground states has the lowest zero-point energy, Henley
has expressed the sum over the spin-wave frequencies (1) as the trace of an operator dependent
on the spin values in a given ground state. The result can be expanded as an infinite sum of
multi-spin potentials. In a collinear spin configuration polarized along n̂, this interaction can
be expressed in terms of Ising variables σi = (Si · n̂)/S = ±1, subject to the constraint

4∑
i=1

σi = 0 on every tetrahedron. (2)

The zero-point energy reads [17]

E (1) = 3
8 J S

∑
�

6∏
i=1

σi + · · · (pyrochlore lattice). (3)

The six-spin interaction couples spins residing around regular hexagons that exist in the
pyrochlore lattice (figure 1). The omitted terms, representing multi-spin interactions of higher
orders, are not necessarily small. However, at least in the two-dimensional models discussed
below, their omission does not affect the selection of ground states. One can check, with the
aid of Henley’s symmetry, that all ground states of the truncated Hamiltonian (3) have the same
zero-point energy (1).

The problem of finding the ground states thus reduces to minimizing the multi-spin
interaction (3) over the Ising variables {σi}, subject to the constraint (2). It remains unsolved for
the pyrochlore lattice. We have succeeded in solving it for two other lattices built from corner-
sharing tetrahedra: the checkerboard and the pyrochlore wafer (figure 2). The checkerboard
is a projection of the pyrochlore lattice onto a plane. Because it has loops of length 4 (around
empty squares), the zero-point potential starts with four-spin interactions [17, 18]:

E (1) = − 1
2 J S

∑
�

4∏
i=1

σi + · · · (checkerboard). (4)

For the pyrochlore wafer, a slice of the three-dimensional pyrochlore lattice, the effective
zero-point energy is given by equation (3).
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It is convenient to switch from spin variables σi to bond variables τi j = −σiσ j =
−(Si · S j )/S2, defined for nearest-neighbour links i j . In terms of these, the constraint (2)
requires that exactly two non-adjacent bonds be frustrated (τi j = −1) on every tetrahedron.
The zero-point effective potentials acquire the following form [18]:

−
4∏

i=1

σi = −τ12τ34 = −τ23τ41,

6∏
i=1

σi = −τ12τ34τ56 = −τ23τ45τ61. (5)

Note that the lattices in question contain two sublattices of tetrahedra and that the multi-spin
interactions (5) involve bonds of tetrahedra belonging to the same sublattice—see figure 2.
Thus the problem reduces to independent minimizations of the bond energies (5) on the two
tetrahedral sublattices. Although not every bond configuration {τi j} corresponds to a physical
spin configuration {σi }, those that minimize the bond potentials (5) do yield legitimate spin
states [18].

In the checkerboard case, the bond potential (5) is minimized when every two bonds facing
each other across an empty square (figure 2(a)) are in the same state (e.g. τ12 = τ34 = +1 and
τ23 = τ41 = −1). The ground states of each tetrahedral sublattice fall into two disjoint classes.
In one class, which can be called ‘horizontal stripes’, tetrahedra of a given row are in the same
bond state. The frustrated bonds are either all vertical or all diagonal. Because every row can
be in one of the two states, there are 2L/2 vacua for each sublattice. The second class—vertical
stripes—is related to the first by a 90◦ rotation of the (sub)lattice. A more detailed derivation
will be given elsewhere [18].

At zero temperature, the system is frozen in one of the striped ground states breaking the
rotational symmetry of the lattice. There are two Ising order parameters: each sublattice of
tetrahedra independently chooses to have vertical or horizontal stripes. The discrete nature of
the order parameter guarantees survival of the long-range order at low temperatures T < Tc.
The stripes will have a finite extent ξ ∼ O(ea/T ) enabling the system to move between ground
states with the same orientational order on a timescale of order ξ . Thermal expectation values
for the bond variables 〈τi j 〉 must therefore be averaged over all ground states with a specified
orientational order. For example, when both sublattices of tetrahedra have horizontal stripes,
the horizontal links always have antiparallel spins (〈τi j〉 = +1), while all other bonds have
uncorrelated spins (〈τi j〉 = 0). Another thermal state, with horizontal and vertical stripes on
the two sublattices of tetrahedra, is depicted in figure 2(a). This state has antiparallel spins
around one-half of the empty squares and strongly resembles the valence-bond solid found in
the ground state of the S = 1/2 system [11].

Apart from the number of dimensions, the checkerboard and pyrochlore lattices have one
other important difference: on the checkerboard, diagonal bonds are not equivalent to vertical
or horizontal ones. This is why the valence-bond order parameter on the checkerboard is of
the Ising, rather than the Z3, type. The pyrochlore wafer (figure 2(b)) is free from this defect.
What classical ground states are selected by quantum fluctuations there?

The six-spin potential (3) translates into the interaction (5) involving three bonds around
a hexagon. Again, the interaction takes place between tetrahedra of the same sublattice. The
three-bond energy is minimized when zero or two bonds are frustrated (τi j = −1). While
superficially this looks like the ground-state rule for the checkerboard, the properties of the
ground states are entirely different. In particular, there is no valence-bond order. Moreover,
the connected valence-bond correlations 〈τi jτkl〉 − 〈τi j 〉〈τkl 〉 are extremely short-ranged. This
can be proven by mapping the ground states of the bond potential (5) onto classical dimer
coverings of the triangular lattice, whose properties are well known [19].

The mapping is illustrated in figures 2(b) and (c). We treat the tetrahedra of one sublattice
as sites of a triangular lattice. Every two tetrahedra contributing frustrated bonds to the same
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Figure 3. Tunnelling lifts the degeneracy of the three distorted ground states of spins on a
tetrahedron. The ground state is a singlet for integer S and a non-Kramers doublet for half-integer
S. The difference can be traced to a Berry phase acquired by the spins in a cycle of adiabatic
evolution.

hexagon (such as α and β) generate a dimer linking the corresponding sites of the triangular
lattice. Because each tetrahedron contributes exactly one frustrated bond to some hexagon,
every site of the dual lattice is connected by a dimer to another site. For a recent update on
this system see [21].

3. Nonperturbative effects: the Berry phase

To demonstrate potential significance of effects nonperturbative in 1/S, consider a toy model
of four antiferromagnetically coupled spins on a flexible tetrahedron. On a regular tetrahedron,
the ground state is a spin singlet with the degeneracy 2S + 1. A high degree of symmetry and
a non-Kramers degeneracy induce the Jahn–Teller effect. For S > 1/2, the sum of elastic and
magnetic energies is minimized by three distorted states. In each of these the ‘molecule’ is
flattened along one of its principal axes (left panel of figure 3) [5].

Taking into account the kinetic energy of the atoms introduces tunnelling events between
the three potential wells. The tunnelling splits the degenerate ground states into a singlet and
a doublet (middle panel of figure 3). The nontrivial result is an oscillatory dependence of the
order of the levels on S: the ground state is a singlet for integer spins and a non-Kramers
doublet for half-integer spins.

At large S, the difference can be traced to a Berry phase acquired by the spins as the
system moves between the three distorted states (the right panel of figure 3). In the process,
depicting one of the potential tunnelling paths, three spins make full 2π rotations in the same
plane. The overall amplitude thus acquires a geometric phase e6π iS , i.e. +1 if S is integer and
−1 if it is half-integer. A similar effect has been discussed by Henley and Zhang [22].

Consider now a generalization of this toy model to d = 1 + 1 dimensions: a chain of
such tetrahedra weakly coupled through vibrational modes of the lattice (figure 4(a)). The
low-energy sector of the model consists of three distorted spin-singlet ground states on each
site and can be described by the quantum q = 3 Potts model. Elastic interactions cause the
distortions of the tetrahedra to be correlated with one another. Assume, for the sake of the
argument, that a uniform distortion of the chain is favoured. Then, in the absence of tunnelling,
the chain has spin-Peierls order with a Z3 order parameter. Low-energy spin-singlet excitations
are domain walls with a finite energy gap �. As the tunnelling 	 is turned on, the spin-Peierls
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Figure 4. (a) A chain of weakly coupled tetrahedra with Heisenberg spins. For antiferromagnetic
interactions, the low-energy sector consists of singlet states. (b) The phase diagram of the q = 3
quantum Potts model showing the energy gap for valence-bond excitations � as a function of the
tunnelling amplitude 	. The region 	 > 0 (	 < 0) describes the chain with integer (half-integer)
spins.

order weakens. The singlet energy gap vanishes at a quantum critical point (figure 4(b)). The
nature of the quantum-disordered phase depends on the sign of the tunnelling amplitude 	 and
thus on whether S is integer or half-integer.

The physics of low-energy singlet states is described by the quantum 3-state Potts model
with the Hamiltonian [20]

H = −2
∑

i

[
cos

(
2π

3
(θi+1 − θi)

)
+ 	 cos

(
2π

3
pi

)]
. (6)

Here θi = 0, 1, 2 is the Potts variable, while pi = 0, 1, 2 is its conjugate momentum. On the
	 > 0 side, the quantum-disordered state also has a gap to singlet excitations. For 	 < 0, the
disordered state is gapless.

It is thus seen that the quantum melting of a valence-bond solid on the chain proceeds in
different ways for integer and half-integer spins. The quantum-disordered phase has gapped
singlet excitations when S is integer. For half-integer S, the liquid has gapless excitations in
the form of valence-bond fluctuations.
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